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We construct an efficient zero-temperature semilocal density functional to dynamically simulate an electron
bubble passing through superfluid 4He under various pressures and electric fields up to nanosecond time scale.
Our simulated drift velocity can be quantitatively compared to experiments particularly when pressure ap-
proaches zero. We find that the high-speed bubble experiences remarkable expansion and deformation before
vortex nucleation occurs. Accompanied by vortex-ring shedding, drastic surface vibration is generated leading
to intense phonon radiation into the liquid. The amount of energy dissipated by these phonons is found to be
greater than the amount carried away solely by the vortex rings. These results may enrich our understanding
about the vortex nucleation induced energy dissipation in this fascinating system.
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I. INTRODUCTION

An electron injected into liquid helium forms a bubble
due to the Pauli exclusion between an excess electron and
helium atoms.1,2 The dissipation mechanisms of a moving
electron bubble in superfluid 4He has attracted considerable
research interests for many years.3–11 Above 1 K, the moving
bubble experiences a drag force from collisions with ther-
mally excited phonons and rotons.3 Below 1 K, this drag
force becomes very small, and even a weak electric field can
accelerate the bubble to a high speed until some new dissi-
pation mechanisms set in. In the high-pressure regime, roton
emission dominates the dissipation owing to the relatively
low Landau velocity vL and the high vortex-ring nucleation
critical velocity vc.

4,5 In the low-pressure regime, vortex-ring
nucleation plays the key role. A vortex ring can attach to the
bubble to form a bubble-ring complex if the electric field is
not overly strong; otherwise, successive vortex rings can be
shed away from the bubble surface.6–8

Pioneering simulations using the Gross-Pitaevskii equa-
tion �GPE� have demonstrated the above vortex-ring nucle-
ation, trapping, and shedding scenario.12,13 But it is known to
be difficult for the efficient local GPE to reproduce helium
properties.14 In contrast, accurate nonlocal density functional
theories have been extensively applied to quasiparticles, vor-
tices, and ions-related problems in liquid helium.15,16 But
they usually require prohibitively high computational cost
for dynamic simulations. In this paper, we introduce our
well-constructed semilocal density functional �SLDF�, asso-
ciated with an optimized numerical scheme, that can recon-
cile both the physical accuracy and the computational effi-
ciency in its applicable regime.17,18 We then present our
dynamic simulation for a moving electron bubble in pure
superfluid 4He under low pressures and strong electric fields,
where successive vortex-ring shedding is indeed observed.
However, we shall point out that although vortex nucleation
does trigger the dissipation, the major part of energy loss
may come from its induced phonon radiation via surface
vibration, rather than purely the shed-away vortex rings.

II. THEORETICAL FORMULATION

We formulate our problem in the framework of a zero-
temperature SLDF theory. The system free-energy density G

consists of the helium part, the electron part, and the helium-
electron interaction part,

G = GHe + Ge + GHe-e. �1�

The helium part GHe takes the form of
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where � is the macroscopic helium wave function and �
����2 is the local helium number density. The electron part
Ge takes the form of

Ge =
�2

2me
����2 − eEz� , �3�

where � is the single-electron wave function and �����2 is
the local electron number density. The ����2 and ����2 terms
above are the helium and electron kinetic energy densities,
with mHe and me being the helium and electron masses, re-
spectively. � is the helium chemical potential controlled by a
given pressure p, which fixes the helium number density � in
bulk. E is the applied electric field, which drives the electron
to move along z direction. g2, g3, g4 and h2, h3, h4 are all
fitting parameters to be explained below. The helium-
electron interaction part GHe-e takes the form of a contact
collision,

GHe-e = f1�� , �4�

in which f1 is a fitting parameter chosen so as to produce a
1 Å scattering length and hence a 1.0456 eV potential bar-
rier for an electron to tunnel into homogeneous helium at
zero temperature and zero pressure.1,2

The polynomial function of � in the second line of Eq. �2�
is the helium-helium interaction energy density in the form
of two-particle, three-particle, and four-particle contact col-
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lisions. In the homogeneous case, it gives the helium internal
energy density,
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from which one can derive the equation of state,

p��� =
1

2
g2�2 +

2

3
g3�3 +

3

4
g4�4, �6�

the chemical potential

���� = g2� + g3�2 + g4�3, �7�

and the sound velocity

c��� = ��g2� + 2g3�2 + 3g4�3�/mHe. �8�

By choosing g2, g3, and g4 according to the well-known
Orsay-Trento density functional,15 the experimentally mea-
sured above quantities at zero temperature can be very well
produced.

The mixture polynomial function of � and ����2 in the
third line of Eq. �2� contains our introduced semilocal inter-
actions also up to four-particle collisions. They are the
lowest-order gradient-expansion corrections to the local in-
teractions and are essential for incorporating the helium sur-
face tension into our theory,
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where the dimensionless function
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By choosing h2, h3, and h4 appropriately, the experimentally
measured surface tension at zero temperature and zero pres-
sure can be produced. In addition, Eq. �9� is a generalized
formula to allow not only zero pressure, when the liquid is in
equilibrium with vacuum, but also a positive pressure, when
the liquid is in contact with an impenetrable wall. In both
situations, the liquid density drops from its bulk value � to 0
within a thin interfacial layer. ���� measures the energy
change per unit surface area due to this density bending, in
comparison with the internal energy per unit area held by the
same number of particles in bulk.17 Such a generalized defi-
nition on the surface tension turns out to be useful for the
electron bubble problem, where the bubble boundary pushes
away the liquid basically like an impenetrable wall, and so
gives rise to a nontrivial surface energy under any finite
pressures.2

Table I lists all the chosen fitting parameters of our SLDF.
Figure 1�a� shows the equation of state. At p=0 bar, �0
=0.021836 Å−3, �0=−7.1500 K, and c0=237.70 m s−1.
Figure 1�b� shows the surface tension versus pressure. At p
=0 bar, �0=0.37554 erg cm−2 with a calculated 5.8 Å sur-
face thickness �defined by 10–90 % helium density� consis-

tent with experiments and other theories.15,17,19

The excitation spectrum in our theory can be found to be
of the Bogoliubov type,

�2
2 = c2����2k2 + b2���	 �2k2

2mHe

2

, �11�

whose pressure dependence is enclosed in the sound velocity
c��� from the local interactions, and the dimensionless func-
tion b��� from the semilocal interactions. Compared with the
efficient local GPE, although our SLDF can indeed produce
more realistic helium bulk and surface properties, and mean-
while maintain the same computational efficiency, it still
cannot incorporate the backflow effect and the roton excita-
tion unless some nonlocal interactions are introduced.14,15

Figure 1�c� shows the excitation spectrum under three typical
pressures: the spinodal pressure −9.5 bar, the saturation
pressure 0 bar, and the melting pressure 25 bar. The primary
reason for employing three semilocal parameters, h2, h3, and
h4, in our SLDF instead of a single one, as that done in the
well-known Stringari-Treiner density functional,17 is to re-
move some pathological behavior of the excitation spectrum.
A single semilocal parameter being used to fit the surface
tension at zero pressure will result in too large of a b��� and
hence unrealistically high excitation energies even at just
moderate momentums.18 This will make the liquid overrigid
against density fluctuation and may bring on artifacts in dy-
namic simulations. With the three semilocal parameters, we
can keep b��� sufficiently small, and also let it slowly de-
crease with pressure to imitate the tendency of roton gap
with pressure in real helium.

We can also find in our theory the rectilinear vortex-line
energy per unit length, by calculating the radial number den-
sity distribution ��r� under a given pressure,
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where � drops from its bulk value � to 0 as r→0, and ��
�d� /dr. The first term in the first line contributes to the
kinetic energy Kline /L due to one unit of quantum circulation.

TABLE I. The chosen fitting parameters of our SLDF.

Parameter Value Unit

f1 5.55671	105 K Å3

g2 −7.18990	102 K Å3

g3 −3.61779	104 K Å6

g4 2.47799	106 K Å9

h2 1.16950	104 K Å5

h3 −1.35048	106 K Å8

h4 3.46549	107 K Å11
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All the other terms contribute to the potential energy Uline /L
due to the density bending.20 The critical negative pressure
for the free expansion of a vortex core is found to be close to
−7 bar. Figure 1�d� shows the vortex-line energy per unit
length versus pressure with a d=20 Å cutoff radial distance.
At p=0 bar, we find Kline /L=2.94 K Å−1 and Uline /L
=1.57 K Å−1. Putting them into the hollow-core model,10

Kline

L
=

��2

mHe
�0 ln

d

a
,

Uline

L
=

��2

mHe
�0� , �13�

we can get the core size a=0.581 Å and the core parameter
�=1.893, which imply a rather rigid core.

III. DYNAMIC SIMULATION

We perform the dynamic simulation in the experimental
low-pressure regime p=0–10 bar and strong electric field
regime E=1–30 MV m−1. Under these conditions, a high-
speed electron bubble can nucleate vortex rings. As is well
known, there are two classic models on the formation of a
vortex ring and a bubble-ring complex.9–11 One is the
encircling-ring �quantum transition� model, in which a full
ring axisymmetrically appears on the bubble equator first,
then moves sideways and captures the bubble on its core.
The other one is the pinned-ring �peeling� model, in which a

small proto-ring nonaxisymmetrically appears on the bubble
equator first, then grows up and retains the bubble on its
core. Experimental evidence suggests that the encircling-ring
model gives a better description at lower temperatures in
isotopically purified 4He, whereas the pinned-ring model
gives a better description at higher temperatures in natural
4He, with the existence of thermal rotons or 3He
impurities.5–7 For an already formed bubble-ring complex,
the strength of the electric field determines its subsequent
behavior. In a field on the order of 103–104 V m−1, the ring
can keep trapping the bubble and may grow to micron size,
which significantly hinders the bubble motion.6 But in a field
on the order of 106–107 V m−1, owing to the vanishing es-
cape barrier, the ring should separate from the bubble during
several picoseconds with its size almost unchanged. The
bubble can then move more freely, as well as successively
shed away vortex rings.8 Since our simulation is for pure 4He
at zero temperature, the axisymmetric vortex-ring nucleation
in the encircling-ring model is more suitable. Furthermore,
since our electric fields lie in the strong regime, the transient
nonaxisymmetric capture-and-escape processes should have
little influence on the long-time physics. Thus we reduce the
original three-dimensional problem into two-dimensional by
taking cylindrical symmetry with transverse coordinate r and
longitudinal coordinate z. This simplification makes the nu-
merical integration up to nanosecond time scale computa-
tionally practical.

The coupled equations of motion for the macroscopic he-
lium wave function � and the single-electron wave function
� can be derived from our SLDF as

FIG. 1. �Color online� The helium properties
in our SLDF. �a� The equation of state. �b� The
surface tension versus pressure. �c� The excitation
spectrum under the spinodal pressure −9.5 bar,
the saturation pressure 0 bar, and the melting
pressure 25 bar. �d� The vortex-line energy per
unit length versus pressure with a 20 Å cutoff
radial distance.
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The fourth-order finite-difference method in space and the
fourth-order Runge-Kutta method in time are used to do the
numerical integration. The computation grid on the r-z plane
is 500	1000 with the space step of 0.2 Å. So the physical
space is a pipe of 200 Å in diameter and 200 Å in length.
We let it move along to keep the electron in the center. Sys-
tematic numerical tests have been done to ensure that 0.2 Å
spatial resolution provides enough precision for our problem,
even when the vortex core structure is involved.

Due to the big difference between the helium and electron
intrinsic time scales on the order of mHe /me
7300, we
adopt the adiabatic approximation. For every instantaneous
helium configuration, we first find the electron ground state
by evolving the electron with 50 imaginary time steps of
0.001 fs, then develop helium with one real time step of
0.001 ps. To avoid the outgoing sound waves from the cen-
tral region being reflected on the grid boundary, we set a
space-dependent damping coefficient by replacing i with
��s�+ i in the helium equation of motion, where

��s� =
�̄

2
�1 + tanh	 s − s̄

w̄

�, �s � �r2 + z2� . �15�

We simply choose s̄=80 Å, w̄=1.0 Å, and �̄=0.5. The
sound waves can travel freely through the undamped region
�s
 s̄� but are quickly attenuated in the damped region �s
� s̄�. Physically, this looks as if there is a strong zero-
temperature heat sink surrounding the system.

Figure 2 shows the calculated radial number density pro-
files of helium ��r� /�0 and electron ��r� /�� for a spherical
static electron bubble under various pressures. Here ��

�� /2R�
3 with R��20 Å being merely a reference radius.

The static bubble radius Rb �defined at 50% helium density�
can be found to be 18.52 Å at p=0 bar and squeezed down
to 13.50 Å at p=10 bar, consistent with experiments and
other theories.1,2 We set these ground states as the initial
states to start the time evolution. For every single run with a
specified pressure and electric field, eight-core parallel com-
putation at 2.83 GHz was performed. Multiple runs with dif-
ferent pressures and electric fields were conducted simulta-
neously on our computing cluster which possesses hundreds
of cores. Typically, it took about one month to reach 10 ns
physical time.

Figure 3 shows the snapshots of the helium number den-
sity profile ��r ,z ; t� /�0 around the moving electron bubble at
a sequence of times under p=0 bar and E=10 MV m−1. The
instantaneous velocity v at each time is approximated by
linearly fitting the displacement of the electron wave func-

tion maximum over a 20 ps time interval. At t=0 ps, the
bubble is on its spherical ground state of radius Rb
=18.52 Å, when the driving field is just switched on. The
initial acceleration of the bubble has the value that is ex-
pected based on the applied force eE and the hydrodynamic
mass 2�Rb

3mHe�0 /3. Up until t=40 ps, v is already as high
as 30.6 m s−1 whereas the bubble shape is only slightly
squeezed and the liquid in front is slightly compressed. As
the bubble velocity increases further, its volume keeps ex-
panding and its shape keeps deforming into an oblate spher-
oid due to the negative pressure on the bubble waist caused
by the Bernoulli effect.21 The acceleration decreases remark-
ably because of the increase in the effective mass so that v
approaches a constant value about 50.6 m s−1 and the flow
pattern exhibits quite well fore-and-aft symmetry as shown
at t=450 ps. After this stage, a narrow edge girdling the
bubble waist gradually sticks out signifying the onset of
vortex-ring nucleation. This adds a considerable inertia to the
bubble motion, making v decrease to 44.9 m s−1 at t
=850 ps, when the bubble attains its largest equatorial radius
about 44 Å and its sharpest edge radius of curvature about
4 Å. We may call the bubble velocity for the first appearance
of this characteristic behavior as the vortex-ring nucleation
critical velocity vc=44.9 m s−1 under the prescribed condi-
tions. There is no dissipation before since the electric work
mainly transforms to the fluid kinetic energy. But around this
time the liquid density starts to fluctuate accompanied by
some phonon generation, presumably because the local flow
near the bubble waist becomes supersonic and keeps hitting
the nucleated vortex core.12,13 At t=950 ps, a vortex ring of
radius Rring�36 Å is detaching from the bubble surface
while v is 43.8 m s−1 and continues to slow down due to the
attraction from the vortex ring. The phonon generation ap-
pears more intense, particularly peaked at a wavelength of
the order of 10 Å. The unexpected large ring radius, almost
twice as big as the static bubble radius, is a unique observa-
tion of our dynamic SLDF simulation.

In the later stage, the vortex ring falls behind, leaving a
drastic surface vibration and velocity oscillation to the
bubble in the next hundreds of picoseconds. At t=970 ps, an

FIG. 2. �Color online� The radial number density profiles of
helium and electron for a spherical static electron bubble under
various pressures.
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annular surface protrusion like a solitary ripplon is formed
and sliding backwards while v is dragged down to
31.5 m s−1. This solitary ripplon then shrinks on the bubble
tail at t=990 ps, and radiates a large number of phonons
backwards into the liquid as shown at t=1030 ps. This pro-
vides a strong forward impulse to speed up the bubble so that
v can even overshoot to 60.5 m s−1 at t=1070 ps. During
this time, the solitary ripplon surviving from the last colli-
sion bounces back and propagates forward. Around t
=1080–1090 ps, it shrinks on the bubble head and deposits
a large number of phonons forward into the liquid. This pro-
vides a strong backward impulse decelerating the bubble ve-
locity to as low as 27.7 m s−1 at t=1170 ps. Afterward,
some remnant surface vibration and phonon radiation keep
happening back and forth while the bubble velocity oscilla-
torily increases until a second vortex ring completes its
nucleation. Then all the processes repeat.

IV. DISCUSSION

Figure 4 shows the time evolution of the moving electron
bubble volume Vb�t� / �4�Rb

3 /3� under p=0 bar and E

=10 MV m−1, obtained from the same evolution shown in
Fig. 3 but extended to about 5 ns physical time. Here
4�Rb

3 /3 with Rb=18.52 Å is the spherical static bubble vol-
ume at t=0 ps. As can be seen, before the dissipation pro-
cesses arise at t�850 ps, Vb�t� keeps growing to about 3.6
times the static volume. After that, Vb�t� oscillates violently
between 2.0 and 4.0 �average about 3.0� times the static vol-
ume. It approximately implicates the hydrodynamic mass
variation, and coincides with the bubble velocity variation
described above. The dotted lines mark the moments of the
vortex-ring shedding events. During t=800–5000 ps, there
are six such events in total. Although they do not exhibit a
regular periodicity, we may still roughly estimate the average
time interval between two successive events ��700 ps.
Each time when a ring leaves the bubble, there follows a
huge volume change immediately and perhaps a series of
small volume changes later on. This can be related to the
complex surface motion displayed in Fig. 3.

Figure 5 shows the drift velocity v̄ versus pressure under
E=2.6, 10, 20, and 30 MV m−1 from our simulation in com-
parison with the low-pressure part of experiment by Nanco-
las et al. at 0.3 K under 2.6 MV m−1.8 Our v̄ is calculated by
linearly fitting the displacement of the electron wave func-

FIG. 3. �Color online� The snapshots of the
helium number density profile around the moving
electron bubble at a sequence of times under zero
pressure and 10 MV m−1 electric field �Ref. 22�.
The bubble travels from left to right along z di-
rection �the longitudinal direction�. Each image
corresponds to a physical size of 100 Å
	100 Å and is reflected up and down in r direc-
tion �the transverse direction� justified by the im-
posed cylindrical symmetry. The instantaneous
velocity is given for each time. The open and
solid arrows indicate the movements of vortex
ring and solitary ripplon relative to the bubble as
mentioned in the text.
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tion maximum over 2 ns after the bubble motion has become
strongly dissipative. Although the instantaneous velocity v
mentioned above undergoes large oscillation, v̄ is nearly con-
stant depending only on the pressure and electric field for a
long time. According to Nancolas et al., if roton emission
was the only dissipation mechanism, then in the limit E
→0 V m−1, v̄ should follow the dashed curve of Landau
velocity vL whereas for E=2.6 MV m−1, v̄ should follow the
dashed-dotted curve based on the well-known relation v̄
=vL+AE1/3, in which A takes its value at 25 bar with the
pressure dependence ignored. However, the experimentally
measured v̄ shows a significant drop from this curve, indi-
cating an additional dissipation mechanism in this low-
pressure regime believed to be vortex-ring nucleation. Our
work supports this general scenario especially for p
3 bar
where the simulation and experimental results quantitatively
agree with each other. This suggests that our SLDF can be an
efficient and reliable tool to study interesting dynamic prob-
lems, particularly under the natural experimental condition
p→0 bar close to zero temperature. The lack of roton exci-
tation in our SLDF may not be problematic for two reasons
that essentially prohibit roton emission in this range. First,
the Landau velocity vL�58 m s−1 is substantially higher
than the vortex-ring nucleation critical velocity vc
�45 m s−1. Second, there is experimental evidence that A is
divergent as p→3 bar from above.8 For p�3 bar, our
simulation still exhibits a qualitatively correct behavior in
terms of the increasing v̄ with increasing p commonly under-
stood as the inverse proportionality of vc with respect to the
bubble size.9–12 The relatively large deviation between simu-
lation and experiment is presumably caused by the lack of
roton excitation in our SLDF whereas in reality, vortex-ring
nucleation and roton emission coexist in this pressure range.

Although in Fig. 3 we have presented that vortex nucle-
ation is indeed the origin of dissipation, it is nontrivial to
investigate how the energy is actually taken away from the
system. While this is normally attributed to purely the fre-
quent vortex-ring shedding, our analysis suggests otherwise.
The energy associated with a large single vortex ring at zero
pressure can be estimated by10

Ering =
��2

mHe
�02�Rring	ln

8Rring

a
− 2 + �
 . �16�

Based on our preceding calculation about the vortex proper-
ties in our density functional, when Rring�36 Å as shown in
Fig. 3, we have Ering�1147 K. As a result, the average rate
of energy loss to the vortex rings is Ering /�
�1147 K /700 ps=2.3	10−11 W. On the other hand, the
average rate of energy input to the system from the electric
work is eEv̄�10 MeV m−1	48 m s−1=7.7	10−11 W.
Strikingly, the released vortex rings only take away about
30% of the total input energy. According to the processes
illustrated in Fig. 3 and discussed above, the remaining en-
ergy loss can be primarily attributed to the phonon radiation
through surface vibration persistently occurring in the time
interval between successive vortex-ring shedding events. Un-
der a fixed electric field with an increasing pressure, we even
notice a tendency for such a dissipation channel to become
increasingly dominant.

V. CONCLUSION

We have carried out dynamic simulation for a moving
electron bubble in pure superfluid 4He under low pressures
and strong electric fields, using a zero-temperature semilocal
density functional theory that embodies realistic 4He bulk
and surface properties. It visualizes the underlying micro-
scopic processes from picosecond to nanosecond time scale,
which cannot yet be directly observed through any experi-

FIG. 4. �Color online� The time evolution of the moving elec-
tron bubble volume under zero pressure and 10 MV m−1 electric
field. The dotted lines mark the moments of the vortex-ring shed-
ding events.

FIG. 5. �Color online� The drift velocity versus pressure under
2.6, 10, 20, and 30 MV m−1 electric fields from our simulation in
comparison with the low-pressure part of experiment by Nancolas
et al. at 0.3 K under 2.6 MV m−1. The dashed curve gives the
Landau velocity for roton emission. The dashed-dotted curve gives
the theoretically extrapolated drift velocity from 25 bar under
2.6 MV m−1 if roton emission was the only dissipation mechanism
�Ref. 8�.
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mental apparatus today. Not only have we confirmed that
theory and experiment show good agreement on the bubble
mobility approaching zero pressure, we have also discovered
that the pronounced surface vibration and phonon radiation
as a result of vortex nucleation dissipate more energy than
the shed-away vortex rings alone. These results may enrich
our understanding about the vortex nucleation induced en-
ergy dissipation in this fascinating system and so warrant
further experimental and theoretical studies.
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